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Abstract:-Cloud computing could definitely benefit from the 

rapid growth of multicore system. Handling of huge data and 

decreasing data relocation requires the computation 

infrastructure of the cloud to place and manage cached data 

efficiently. Cloud needs to significantly improve the cache 

utilization and efficiently support the data placement. The 

management of multi-level caching hierarchy is a critical and 

challenging task. Although there exists many hardware and OS-

based schemes, they are difficult to be adopted in practice since 

they incur non-trivial overheads and high complexity. In order 

to efficiently deal with this challenge, this project titled 

“Homogeneous Data Detection using MERCURY for the Cloud” 

proposes MERCURY, a cost-effective and lightweight hardware 

support to coordinate with OS-based cache management 

schemes. Its basic idea is to pull data similarity to reduce data 

migration costs and deliver high performance. A multicore 

enabled Locality-Sensitive Hashing (MC-LSH) in the 

computation infrastructure is used for the cloud to accurately 

capture the similarity among the data. It efficiently partitions 

data into L1 cache, L2 cache and main memory based on their 

distinct localities in a multicore system environment. This helps 

to optimize cache utilization and minimize the replacement of a 

last level cache element with a less useful one. Experiments based 

on real-world applications demonstrate the effectiveness and 

efficiency of Mercury. 

 

Index Terms - Cloud computing, multicore processor, cache 

management,homogeneous data, cache coloring. 

 

1 INTRODUCTION 

 

Cloud computing provides a convenient, on-demand network 

access to a shared pool of configurable computing resources 

like networks,  servers, storage, applications, services etc. that 

can be rapidly provisioned  and released with minimal 

management effort or service provider interaction. Cloud 

consists of large volume of data and these data are 

heterogeneous. Even though the data sets are very large, the 

data streams associated are slow, of the speed of Gigabits per 

second. The demands for data accessibility on clouds are 

increasing [14, 19]. One of the challenges that the cloud 

service providers face is to serve the needs of the users in the 

shortest possible time. The services provided to the users 

should guarantee high quality and it must avoid duplication. 

Commercial companies like Google, Microsoft, Yahoo!, 

Facebook etc. generally handle very large volume of data 

everyday [15]. The computation environment for the cloud 

should provide efficient processing and analysis of these data 

to obtain the required quality of service. An interesting 

behavior exhibited by these applications is that there exists 

high degree of similarity across the data of various instances 

of the application. 

 

Multi core processors are increasingly used today. The cores 

are fully functional with computation units and caches and 

hence support multithreading. In a many-core processor the 

number of cores is large enough that traditional multi-

processor techniques are no longer efficient. Cores on a multi-

core device can be coupled tightly or loosely. They may share 

or may not share a cache. They also implement inter-core 

communications methods or message passing. Cores on a 

multi-core implement the same architecture features as single-

core systems such as instruction pipeline parallelism (ILP), 

vector-processing, SIMD or multi-threading. Chip 

Multiprocessors (CMPs) use relatively simple single-thread 

processor cores to exploit only moderate amounts of 

parallelism within any one thread, while executing multiple 

threads in parallel across multiple processor cores. If an 

application cannot be effectively decomposed into threads, 

CMPs will be underutilized. A multicore processor is more 

adequate for parallel processing. Each microprocessor 

manufacture has its specific implementation of multicore 

technology. The number of cores on a single chip is 

increasing to hundreds of cores per chip. The performance 

potential from this technology is to be greatly explored. One 

of the challenges in using multi core technology is to get lost 

to think of all new ways to explore the technology as 

traditional methods look comfortable [4]. 

 

A multicore architecture contains several CPU cores each 

equipped with a private first level cache. This is common with 

all multicore designs. Together with the core and the L1 

cache, the chip also contains a second level (L2) cache or a 

few L2 caches, depending on the concrete implementation. 

The former can be typically found in the Intel multicore 
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processors and the latter is adopted by AMD. Through a 

memory controller, the second level cache is combined with 

main memory. Additionally, some products have an off-chip 

L3 in front of the main memory. Hence it is important to find 

methods to improve the cache utilization and to efficiently 

place the data within the cache. These problems are very 

difficult and challenging to address in the case of multicore 

systems. 

The challenges we have to address are inconsistency between 

CPU and operating system caches, performance bottleneck in 

cloud system memory access and handling of last-level cache 

(LLC) pollution.  

Caches are used to bridge the speed gap between CPU and 

memory. The two types of caches used are CPU caches – L1 

cache, L2 cache etc. and operating system (OS) buffer cache. 

The CPU caches are at the hardware level where as the OS 

cache is at the software level. These two are developed 

independent of each other. Hence inconsistency exists 

between these two caches. The degree of inconsistency is 

higher in the case of multicore systems. This leads to 

performance degradation in systems where a cache is shared 

by several cores [6]. In cloud systems the performance 

bottleneck has been shifted from slow I/O access to high 

memory access latency. Performance bottleneck is related to 

the placement of data in the cache. Hence suitable placement 

of data in the cache is necessary to improve the overall 

performance of the cloud systems. The existing policies in 

multicore systems are neither efficient nor scalable. To 

address these problems we need to find the data similarity and 

to optimize the utilization of cache- both private and shared 

caches. The last level cache (LLC) is dynamically shared 

among all the cores in a multicore system. Each core has its 

lowest level of cache hierarchy. Cache pollution – the 

replacement of a cached data with a less useful one – occurs 

when a non-reusable cache line is installed into a cache set. 

The conventional approaches to alleviate the LLC pollution 

use recent ordering as it serves as good prediction for 

subsequent behaviors of cache accesses.  

 

The proposed system alleviates these limitations. Mercury is 

implemented and the similarity is managed at the page levels 

by using the operating system mechanisms. This is based on 

the observation that pattern analysis at the page level incurs 

less overhead than at the block level. Pattern analysis at the 

page level requires less state and storage space compared to 

the block level policies. The system is also compatible with 

the existing cloud computing systems and can further improve 

by providing an efficient and scalable caching scheme. It 

plays an important role in multilevel cache hierarchy. It 

employs multitype membership management to narrow the 

inconsistency gap between CPU and operating system caches. 

The data in the multicore caches are classified into three 

types. They are frequently accessed and correlated, frequently 

accessed but not correlated, and infrequently accessed data 

sets. The system uses a multicore enabled locality sensitive 

hashing (MC-LSH) scheme to address the performance 

bottleneck and to alleviate the LLC pollution. Locality 

sensitive hashing (LSH) is used to accurately capture the data 

similarity in the computation infrastructure for the cloud. A 

conventional LSH scheme suffers from the problem of 

homogeneous data placement and also it has the disadvantage 

of space inefficiency. A Multi-Core-enabled LSH (MC-LSH) 

is used to address these problems. In MC-LSH a signature 

vector is used instead of many hash tables in a standard 

locality sensitive hashing. The significant improvements in 

using signature vector are the space savings and accuracy in 

measuring the data similarity. It minimizes the cache conflicts 

and reduces the amount of migrated data. This in turn 

significantly reduces the low-speed memory accesses. We 

have implemented the components and functionalities of the 

system in a software layer and evaluated the efficiency using 

a database system. 

 

2.  RELATED WORK 

 

Efficient management of multilevel cache hierarchy is 

important to obtain high performance in the cloud. There 

exists a wide range of proposals to improve cache 

performance. R-NUCA obtains near-optimal cache block 

placement by online classification of blocks and placing data 

close to the core [8]. Affinity scheduling [13] reduces cache 

misses by judiciously scheduling a process on a recently used 

CPU. A common class of workloads for shared-memory 

multiprocessors is multi-programmed workloads.  Data 

prefetching [5] is an effective way to bridge the increasing 

performance gap between processor and memory. Data 

Access History Cache (DAHC) is a cache architecture which 

is capable of supporting many well-known history-based 

prefetching algorithms, especially adaptive and aggressive 

approaches. Simulation experiments can be carried out to 

validate DAHC design and DAHC-based data prefetching 

methodologies and to demonstrate performance gains. 

Similarity search [12] methods are widely used as various 

data mining and machine learning. Nearest neighbor search 

(NNS) algorithms are often used to retrieve similar entries, 

given a query. A Ternary Content Addressable Memory 

(TCAM) can query for a bit vector within a database of 

ternary vectors, where every bit position represents 0, 1 or *. 

TCAM access and storage is nearly linear in the size of the 

database.   

 

Bounded Locality Sensitive Hashing (Bounded LSH)[9] 

method is used for similarity search in P2P file systems. 

Bounded LSH makes improvement on the space saving and 

quick query response in the similarity search, especially for 

high-dimensional data objects that exhibit non-uniform 

distribution property. Bounded-LSH is a simple and space-
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efficient mapping of non-uniform data space into load-

balanced hash buckets that contain approximate number of 

objects. The Mergeable [4] cache architecture that detects data 

similarities and merges cache blocks, resulting in substantial 

savings in cache storage requirements. This leads to 

reductions in off-chip memory accesses and overall power 

usage, and increases in application performance. This 

technique provides a scalable solution and leads to significant 

speedups due to reductions in main memory accesses. 

Summary Cache [7] is a protocol in which each proxy keeps 

the URLs of cached documents of each participating proxy. 

Two factors contribute to the low overhead: the summaries 

are updated only periodically, and the summary 

representations are economical as low as 8 bits per entry.  

 

A dynamic mechanism using multiple memory controllers [2] 

is used that takes the memory access latency variation into 

account when placing data in appropriate slices of physical 

memory. An adaptive first-touch page placement and dynamic 

page-migration mechanisms are used to reduce DRAM access 

delays for multi-MC systems. Multi-probe LSH [11] is built 

on the well-known LSH technique, but it intelligently probes 

multiple buckets that are likely to contain query results in a 

hash table. The multi-probe LSH method is implemented and 

evaluated the implementation with two different high-

dimensional datasets.  

 

Scavenger [3] is an architecture for last-level caches. 

Scavenger divides the total storage budget into a conventional 

cache and a victim file architecture, which employs a skewed 

Bloom filter in conjunction with a pipelined priority heap to 

identify and retain the blocks that most frequently missed in 

the conventional part of the cache in the past.  An adaptive 

cache compression [1] policy is implemented that 

dynamically adapts to the costs and benefits of cache 

compression. This policy is based on a two-level cache 

hierarchy where the L1 cache holds uncompressed data and 

the L2 cache dynamically selects between compressed and 

uncompressed storage.  MCC-DB [10] makes use of different 

query execution patterns to minimize cache conflicts. 

 

3.  PROPOSED MODELLING 

 

The property of data similarity is helpful to perform an 

efficient and scalable caching. The main benefits obtained 

from such a scheme include throughput improvements and the 

reduction of the last level cache misses rates, query latency, 

and data migration overheads.  

 

The system is designed based on the observations that data 

similarity widely exists in the real-world applications. The 

problem of similarity search refers to finding objects that have 

similar characteristics to the query object. When data objects 

are represented by d-dimensional feature vectors, the goal of 

similarity search for a given query object q, is to find the K 

objects that are closest to q according to a distance function in 

the d-dimensional space. The search quality is measured by 

the fraction of the nearest K objects that are able to retrieve. 

 

Data similarity is defined based on a predefined threshold 

value. For two data with point representations as a and b, 

having d-dimensional attributes that are represented as vectors 

a̚d and ̚bd, if the geometric distance between vectors ̚ad and ̚bd 

is smaller than the predefined threshold, they are similar. The 

data similarity often hides behind the locality of access 

patterns.  

 

2.1 Multitype Membership 

 

The cached data placement in the multilevel cache hierarchy 

for a multicore architecture to offer efficient computation 

infrastructure for the cloud is shown in Fig 2.1(a). The term 

“cache-member,” determines the data memberships in each 

cache based on the given constraints. The constraints include 

migration costs and data access latency. It is analyzed based 

on the architecture where multicore processors share a 

common L2 cache and each core has its own private L1 

cache.   

 

 
a)Private L1 caches and shared L2 cache 

 

 
Figure 2.1 Cache-member Description 

It is needed to identify and aggregate similar data into the 

same or adjacent private L1 caches, and then allocate the data 
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accessed by more than one core into a shared L2 cache.  Thus 

the cached data is managed in both L1 and L2 caches. 

Moreover, an ideal multicore architecture is scalable and 

flexible to allow dynamic and adaptive management on the 

cached data. The premise is to accurately capture the similar 

data.  

 

The homogeneous data placement is based on the distinct 

properties and multitype memberships of cached data. A 

differentiated placement policy is used to improve the 

homogeneous data management. In this policy the cache 

memberships are classified into three types as shown in 

Figure 2.1(b). The accessed data are classified into three 

categories. They are i) Frequently accessed and correlated 

data (Type-1), ii) Frequently accessed but loosely correlated 

data (Type-2), and iii) Infrequently accessed data (Type-3). 

 

After the classification of data they are placed in different 

locations. The frequently accessed and correlated data are 

placed in private L1 cache, and the frequently accessed but 

loosely correlated data are placed in L2 cache. The 

infrequently accessed data are placed in the main memory. In 

this way, the strength of access locality is differentiated to 

facilitate the efficient placement of cached data.  

 

2.2 Locality Sensitive Hashing (LSH) 

 

Data stored in the cloud are heterogeneous and of high 

dimensions. Hence finding the data similarity is a time 

consuming and computation-intensive work. To accomplish a 

suitable tradeoff between similarity accuracy and operation 

complexity, a hash-based approach, the LSH is used due to its 

locality-aware property and ease of use. The LSH can identify 

and place similar data together with low complexity. Locality-

Sensitive Hashing (LSH) is a method which is used for 

determining which items in a given set are similar. Rather 

than using the naive approach of comparing all pairs of items 

within a set, items are hashed into buckets, such that similar 

items will be more likely to hash into the same buckets. As a 

result the number of comparisons needed will be reduced; 

only the items within any one bucket will be compared. 

Locality-sensitive hashing is often used when there exist an 

extremely large amount of data items that must be compared. 

In these cases, it may also be that the data items themselves 

will be too large, and as such will have their dimensionality 

reduced by a feature extraction technique beforehand. 

 

The main application of LSH is to provide a method for 

efficient approximate nearest neighbour search through 

probabilistic dimension reduction of high-dimensional data. 

This dimensional reduction is done through feature extraction 

realized through hashing (eg. minhash signatures), for which 

different schemes are used depending upon the data. LSH is 

used in fields such as data mining, pattern recognition, 

computer vision, computational geometry, and data 

compression. It also has direct applications in spell checking, 

plagiarism detection, and chemical similarity. Locality 

Sensitive Hashing (LSH) is a method of performing 

probabilistic dimension reduction of high-dimensional data. 

The basic idea is to hash the input items so that similar items 

are mapped to the same buckets with high probability (the 

number of buckets being much smaller than the universe of 

possible input items). 

A locality sensitive hashing scheme is defined with respect to 

a universe of items U and a distance metric ϕ :U×U→[0,1]. 

An LSH scheme is a family of hash functions H coupled with 

a distribution D over the functions such that a function h∈H 

chosen according to D satifies the property that 

Pr[h(a)=h(b)]=ϕ(a,b) for any a,b∈U.  

3. 1 System Architecture 

 

MERCURY uses the MC-LSH to identify similar data and 

leverages an LRU replacement in each cache to update stale 

data. Figure 3.1 shows the MERCURY architecture in the 

multilevel hierarchy. It is assumed that each core has one 

private L1 cache and all processor cores share an L2 cache.  

 
Figure 3.1 Mercury multicore caching architecture 

 

The MERCURY scheme is tightly associated with two parts. 

One is the processor architecture and the other is the operating 

system. Furthermore, to explicitly represent the differentiated 

memberships identified by the MC-LSH, different flags are 

used to label each cache line and obtain holistic optimization 

in the multilevel cache hierarchy.  
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3.2 Cache data Management 

 

The caching schemes in a multicore processor include L1 and 

L2 cache management [18], and virtual-physical address 

translation. L1 cache management deals with frequently 

accessed and closely related data placement. Each core has 

one associated cache that contains frequently visited data to 

increase the access speed and decrease the required 

bandwidth. L2 cache management deals with frequently 

accessed and loosely related data placement.  

 

L2-cache is a shared cache and to partition the shared L2 

cache, the well-known page color [16],[17] scheme is used  

due to its simplicity and flexibility. Page coloring is an 

extensively used OS technique for improving cache and 

memory performance. Page colouring is illustrated as shown 

in Figure 3.2.  

 

A physical address contains several common bits between the 

cache index and the physical page number, which is indicated 

as a page color. One can divide a physically addressed cache 

into nonintersecting regions (cache color) by page color, and 

the pages with the same page color are mapped to the same 

cache color. A shared cache is divided into N colors, where N 

comes from the architectural settings. The cache lines are 

represented by using one of N cache colors.  

 
Figure 3.2 Page colouring technique 

 

 

 
Figure 3.3 Page Colour bits 

 

Page color manages the bits between the cache index and the 

physical page number in the physical memory address as 

shown in Figure 3.3. Page coloring is a software technique 

that controls the mapping of physical memory pages to a 

processor’s cache blocks. Memory pages that map to the same 

cache blocks are assigned the same color. By controlling the 

color of pages assigned to an application, the operating 

system can manipulate cache blocks at the granularity of the 

page size times the cache associativity. This granularity is the 

unit of cache space that can be allocated to an application. 

The maximum number of colors that a platform can support is 

the cache line size multiplied by the number of sets and 

divided by the page size.  

 

Specifically, the applications need to specify the required 

space in their requests. The requests help decide how to 

partition available cache space among query requests. Query 

execution processes indicate partitioning results by updating a 

page color table. The memory pages of the same color can be 

mapped to the same cache region. To efficiently partition the 

cache space, different page colors are allocated to memory 

threads. MERCURY can hence leverage the page coloring 

technique to complete cache partitioning among different 

processes and support the queries. 

 

The operating system functionalities support the MC-LSH 

computation and update the locality-aware data. A standard 

LSH helps identify similar data and unfortunately incurs 

heavy space overhead, i.e., consuming too many hash tables, 

to identify the locality-aware data. The space inefficiency 

often results in the overflowing from a limited-size cache. 

MERCURY proposes to use an MC-LSH, Multicore Locality 

Sensitive Hashing, to offer efficiency and scalability to the 

multicore caching. Specifically, the MC-LSH uses a space-

efficient signature vector to maintain the cached data and 

utilizes a coding technique to support a differentiated 

placement policy for the multitype data.  

 

A key function in MERCURY is to identify similar data with 

low operation complexity for updating locality-aware data.  

This identification and updating is to be done accurately as 

well as fast. MC-LSH scheme is used to identify similar data 

and avoid brute-force checking between arriving data and all 

valid cache lines. The similar data are then placed in the same 

or close-by caches to facilitate multicore computation and 

efficiently update data. Since the cached data are locality-

aware, MERCURY, hence, decreases migration costs and 

minimizes cache conflicts.  

 

3.3 SIMILARITY Detection 

 

Similarity detection is a main component in the MERCURY 

designs to detect the homogeneous data. The algorithm used 

for this purpose is based on Locality Sensitive Hashing. In 

Locality Sensitive Hashing the similarity between two items, 

C1 and C2, are determined as follows. 
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The similarity of C1 and C2 =     Sim (C1,C2) = is the ratio of 

the sizes of the intersection and union of C1 and C2. 

• Sim (C1,C2) = |C1C2|/|C1C2|                  (3.1) 

• The probability  that h (C1) = h (C2) is the same as Sim 

(C1, C2)  

The value computed using Equation (3.1) gives the similarity 

between C1 and C2. It is the ratio of intersection to the union.   

 

An MC-LSH, Multicore Locality Sensitive Hashing, design is 

used in MERCURY to capture the data similarity. The MC-

LSH is a multicore-enabled scheme that consists of the LSH-

based computation, a signature vector structure and the 

multitype membership coding technique. It offers a 

deterministic membership for each data item. Compared with 

the conventional classification schemes for exact results, the 

MC-LSH provides an approximate and fast scheme to obtain 

significant time and space-savings. The MC-LSH employs the 

LSH functions to identify similar data based on the access 

patterns. To address the problem of space inefficiency (i.e., 

too many hash tables) in the standard LSH, a signature vector 

structure is employed. Furthermore, to offer differentiated 

data placement, a multitype membership coding technique is 

used.  

 

The standard LSH has the limitation that it   captures similar 

data by allowing them to be placed into the same hash buckets 

with a high probability.  

Definition 1. Given a distance function ǁ*ǁ, a data domain S, 

and some universe U, an LSH function family, i.e., 

IH={h:S→U} is called (R,cR,P1,P2)-sensitive, if for ˅p,q C S 

: 

 

   If ǁp,qǁ≤ R then PrIH[h(p)=h(q)]≥P1,         (3.2) 

   If ǁp,qǁ>cR then PrIH[h(p)=h(q)]≤P2          (3.3) 

where c>1 and P1>P2. 

 

A value 1 in the probability calculated using the Equation 

(3.2) shows that the items are completely similar. A value less 

than or equal to 1 can be used for computational purposes and 

this is taken as the threshold value. If the distance calculated 

using the probabilities in Equation (3.2) and Equation (3.3) is 

less than the defined threshold value, the items are considered 

as dissimilar. Otherwise they are treated as similar items. 

Thus the distance function can be used to determine the 

similarity. 

 

By using the LSH functions, similar data have a higher 

probability of colliding than the data that are far apart. 

Although the LSH has been recently used in many 

applications, it is difficult to be used in the multicore systems 

due to heavy space overhead and homogeneous data 

placement. These limitations have severely hampered the use 

of the multicore benefits for high-performance systems. 

Unlike the existing work, MERCURY enables the LSH to be 

space-efficient by leveraging signature vectors.  

 

3.4 SIGNATURE Vector 

 

A space-efficient signature vector and a simple coding 

technique help maintain and represent the multitype 

memberships. The MC-LSH uses space-efficient signature 

vectors to store and maintain the locality of access patterns. A 

signature vector is an m-bit array where each bit is initially set 

to 0. LSH functions are used to map data points into bits. 

There are totally L LSH functions, gi(1 ≤ i ≤ L), to hash a data 

point into bits, rather than its original buckets in hash tables. 

This technique significantly decreases space overhead. A data 

point is given as an input to a hash function gi , which is then 

mapped into a bit that is thus set to 1.If a bit is set more than 

once only the first setting takes effect.  

 

The signature vector is used to maintain the data similarity. 

The bits that receive more hits than its left and right 

neighbours are known as centralized bits. The hit numbers are 

much larger than a predefined threshold value. The 

centralized bits become the centers of correlated data. They 

are selected to be mapped and stored in the L1 caches. When 

hashing data into the signature vector, the hit numbers of bits 

are counted and carefully select the centralized bits. The 

threshold demonstrates the clustering degree of data 

distribution, thus depending upon the access patterns of the 

real-world applications. After selecting the centralized bits, a 

mapping between the centralized bits and L1 caches is 

constructed to facilitate the data placement. Moreover, the 

number of centralized bits is unnecessarily equal to that of the 

L1 caches. If the number of centralized bits is larger than that 

of L1 caches, an L1 cache may contain the data from more 

than one adjacent centralized bit.  

 

Even though the MC-LSH computation can guarantee similar 

data to be hashed into one bit with very high probability, it 

need not be 100 percent accurate. This means that similar data 

are still possible to be placed into adjacent bits. False 

negative, hence, occurs when the hit bit is 0 and one of its 

neighbours is 1. An extra check to the neighbouring bits 

besides the hit one can be done to avoid potential false 

negatives. Although extra checking on neighbouring bits 

possibly incurs false positives, a miss from the false negative 

generally incurs the larger penalty than the false positive. 

MERCURY probes more than one hit bit, i.e., checking left 

and right neighbours, besides the hashed bit when the hit bit is 

“0”.  

 

MERCURY offers scalable and flexible schemes based on the 

characteristics of the real-world workloads to efficiently 

update the signature vectors. Specifically, if the workloads 

exhibit an operation-intensive (e.g., write-intensive) 
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characteristic, the operations are carried out on the signature 

vectors and allow the (re)-initialization in the idle time.  

3.5 Membership Coding 

 

Multitype membership coding is used in the scheme to 

differentiate data. The memberships in the MC-LSH include 

frequently accessed and correlated, frequently accessed but 

not correlated and infrequently accessed data. The MC-LSH 

identifies data memberships and places data into L1 cache, L2 

cache, or main memory, respectively. To determine whether 

the hits in multiple LSH vectors indicate a single cache, a 

coding technique is used which guarantees membership 

consistency and integrity.  

3.5 Identifying and Removing Redundancy 

In the multilevel hierarchy of MERCURY, it is needed to 

update cached data and their memberships in the signature 

vector. We use a least frequently used (LFU) replacement 

strategy. With LFU, the cached data are all more popular than 

others. Moreover the frequency of accessing the data items is 

available from the signature vector and the counting Bloom 

Filter. Hence there is no extra computation complexity and no 

other data structure is needed. To avoid redundancy of cached 

data, the shared L2 cache is used to place data shared among 

multiple cores. The private cache L1, of each core contains 

separate data. These data are periodically scanned to find 

duplication. The similarity function is used for this. Similar 

data used by multiple cores are placed in shared L2 cache. 

Page coloring is used for improving the cache performance. In 

the shared L2 cache, the data is labelled using page colors of 

the correlated cores to update caches. For two items C1 and 

C2, if the ratio of the intersection to the union is greater than 

or equal to a predefined threshold, they are considered as 

similar.  

The counting Bloom filters are used to update the data 

membership in the signature vectors. They facilitate the data 

deletion and maintain the membership of the data that have 

been identified to be correlated and placed into the 

corresponding L1 caches. The counting Bloom filters help 

maintain the membership of cached data in a space-efficient 

way. They also carry out the initialization of the L1 caches 

and keep the load balance among multiple L1 caches. 

Each counting Bloom filter is associated with one L1 cache. 

When an item is inserted into the L1 cache, it is meanwhile 

inserted into the counting Bloom filter and the hit counters are 

increased by 1. Since each counting Bloom filter only needs 

to maintain the items existing in the corresponding L1 cache 

and the number of stored data is relatively small, only less 

storage space is required. When an item is deleted, the hit 

counters are decreased by 1. If all counters become 0, there 

are no cached data. In that situation the associated caches are 

initialized by sampling data to determine the locality-aware 

representation in the signature vector. The size of a signature 

vector depends on not only the amounts of data to be inserted, 

but also their distribution. 

4 RESULTS AND DISCUSSIONS 

MERCURY leverages the MC-LSH to identify similar data 

that are placed into L1 and L2 caches, respectively, with an 

LFU replacement policy. Specifically, each core has its own 

private L1 cache whereas an L2 cache is shared by multiple 

cores. The scalability of MERCURY is evaluated by 

increasing the number of cores. The experiments were done in 

a software simulation environment using a web server and 

clients. A database was used to simulate the cloud storage. In 

the simulation model a number of clients are setup to send out 

queries concurrently. For each client, queries are randomly 

drawn from the pool of all TPC-H queries. The experiments 

are repeated under different data set sizes and measured the 

performance by the metrics migration cost and hit rate. The 

outputs for these metrics are compared with other existing 

systems to show the efficiency of the Mercury. 

4.1 Migration Cost  

Hit misses or updates in caches often lead to data migration 

among multiple caches. This incurs relatively high costs in 

terms of data transmission and replacement in the caches of 

other cores. Fig. 4.1 shows the percentage of migrated data in 

Private, Shared, PCM, and MERCURY. The average 

percentages of migrated data are 13.2 and 11.9 percent, 

respectively, in private and shared caches as shown in Table 

4.1. 

 

Architecture Private Shared Mercury PCM 

Avg percent of 

migrated data 
13.2 11.9 2.8 8.5 

    Table 4.1 Average percentage of migrated data  

 

 
Figure 4.1 Percentage of migrated data 

MERCURY can obtain better performance in this metric and 

decrease the number of migrated data on average by 35.26 on 

4-core systems. One of the main reasons for this is that the 

MC-LSH provides high accuracy of identifying correlated 
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data, thus reducing the number of migrated data. The other 

reason is that the fast identification of similar data in 

MERCURY produces low computation complexity.  

4.2 Hit Rate  

 

One of the key metrics to evaluate cache efficiency is the hit 

rate that defines the probability of obtaining queried data 

within limited cache space for requests. Fig.4.2 shows the 

cache hit rate of the MERCURY scheme compared with 

private, shared, and PCM. The average hit rates in private, 

shared, MERCURY, and PCM are respectively 65.22, 67.15, 

86.92, and 69.27 percent on the 4-core system, which is 

tabulated in Table 4.2.  

 

Architecture Private Shared Mercury PCM 

Avg percent of 

hit rate 
65.22 67.15 86.92 69.27 

     Table 4.2 Average percentage of migrated data  

 

MERCURY has the better performance in this metric than 

others since the MC-LSH accurately identifies correlated data 

within constant-scale execution complexity. The improved 

accuracy significantly decreases potential migration costs that 

possibly occur due to hit misses. The quick identification also 

alleviates the effects of staleness in the caches. 

 
                Fig 4.2 Hit rates 

5 CONCLUSION 

Mercury determines data similarity and support efficient data 

placement. The MC-LSH accurately captures the 

differentiated similarity among data. MC- LSH scheme 

alleviates the problem of homogeneous data placement and 

space inefficiency. The similarity-aware MERCURY plays an 

important role in multilevel cache hierarchy. It efficiently 

partitions data into L1 cache, L2 cache and main memory 

based on their distinct localities in a multicore system 

environment. L2-cache is a shared cache and to partition the 

shared L2 cache, the page color scheme is used to control 

cache partitioning, and consequently to achieve fair and 

efficient cache utilization. It employs multitype membership 

management to narrow the inconsistency gap between CPU 

and operating system caches. 
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