
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 1, Issue 3, May (2015)

ISSN: 2395-5317 ©EverScience Publications 8

Homogeneous Data Detection Using Mercury for the

Cloud

Roy Thomas

University College of Engineering, Nagercoil

K.L.Neela

Assistant Professor, University College of Engineering, Nagercoil

Abstract:-Cloud computing could definitely benefit from the

rapid growth of multicore system. Handling of huge data and

decreasing data relocation requires the computation

infrastructure of the cloud to place and manage cached data

efficiently. Cloud needs to significantly improve the cache

utilization and efficiently support the data placement. The

management of multi-level caching hierarchy is a critical and

challenging task. Although there exists many hardware and OS-

based schemes, they are difficult to be adopted in practice since

they incur non-trivial overheads and high complexity. In order

to efficiently deal with this challenge, this project titled

“Homogeneous Data Detection using MERCURY for the Cloud”

proposes MERCURY, a cost-effective and lightweight hardware

support to coordinate with OS-based cache management

schemes. Its basic idea is to pull data similarity to reduce data

migration costs and deliver high performance. A multicore

enabled Locality-Sensitive Hashing (MC-LSH) in the

computation infrastructure is used for the cloud to accurately

capture the similarity among the data. It efficiently partitions

data into L1 cache, L2 cache and main memory based on their

distinct localities in a multicore system environment. This helps

to optimize cache utilization and minimize the replacement of a

last level cache element with a less useful one. Experiments based

on real-world applications demonstrate the effectiveness and

efficiency of Mercury.

Index Terms - Cloud computing, multicore processor, cache

management,homogeneous data, cache coloring.

1 INTRODUCTION

Cloud computing provides a convenient, on-demand network

access to a shared pool of configurable computing resources

like networks, servers, storage, applications, services etc. that

can be rapidly provisioned and released with minimal

management effort or service provider interaction. Cloud

consists of large volume of data and these data are

heterogeneous. Even though the data sets are very large, the

data streams associated are slow, of the speed of Gigabits per

second. The demands for data accessibility on clouds are

increasing [14, 19]. One of the challenges that the cloud

service providers face is to serve the needs of the users in the

shortest possible time. The services provided to the users

should guarantee high quality and it must avoid duplication.

Commercial companies like Google, Microsoft, Yahoo!,

Facebook etc. generally handle very large volume of data

everyday [15]. The computation environment for the cloud

should provide efficient processing and analysis of these data

to obtain the required quality of service. An interesting

behavior exhibited by these applications is that there exists

high degree of similarity across the data of various instances

of the application.

Multi core processors are increasingly used today. The cores

are fully functional with computation units and caches and

hence support multithreading. In a many-core processor the

number of cores is large enough that traditional multi-

processor techniques are no longer efficient. Cores on a multi-

core device can be coupled tightly or loosely. They may share

or may not share a cache. They also implement inter-core

communications methods or message passing. Cores on a

multi-core implement the same architecture features as single-

core systems such as instruction pipeline parallelism (ILP),

vector-processing, SIMD or multi-threading. Chip

Multiprocessors (CMPs) use relatively simple single-thread

processor cores to exploit only moderate amounts of

parallelism within any one thread, while executing multiple

threads in parallel across multiple processor cores. If an

application cannot be effectively decomposed into threads,

CMPs will be underutilized. A multicore processor is more

adequate for parallel processing. Each microprocessor

manufacture has its specific implementation of multicore

technology. The number of cores on a single chip is

increasing to hundreds of cores per chip. The performance

potential from this technology is to be greatly explored. One

of the challenges in using multi core technology is to get lost

to think of all new ways to explore the technology as

traditional methods look comfortable [4].

A multicore architecture contains several CPU cores each

equipped with a private first level cache. This is common with

all multicore designs. Together with the core and the L1

cache, the chip also contains a second level (L2) cache or a

few L2 caches, depending on the concrete implementation.

The former can be typically found in the Intel multicore

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 1, Issue 3, May (2015)

ISSN: 2395-5317 ©EverScience Publications 9

processors and the latter is adopted by AMD. Through a

memory controller, the second level cache is combined with

main memory. Additionally, some products have an off-chip

L3 in front of the main memory. Hence it is important to find

methods to improve the cache utilization and to efficiently

place the data within the cache. These problems are very

difficult and challenging to address in the case of multicore

systems.

The challenges we have to address are inconsistency between

CPU and operating system caches, performance bottleneck in

cloud system memory access and handling of last-level cache

(LLC) pollution.

Caches are used to bridge the speed gap between CPU and

memory. The two types of caches used are CPU caches – L1

cache, L2 cache etc. and operating system (OS) buffer cache.

The CPU caches are at the hardware level where as the OS

cache is at the software level. These two are developed

independent of each other. Hence inconsistency exists

between these two caches. The degree of inconsistency is

higher in the case of multicore systems. This leads to

performance degradation in systems where a cache is shared

by several cores [6]. In cloud systems the performance

bottleneck has been shifted from slow I/O access to high

memory access latency. Performance bottleneck is related to

the placement of data in the cache. Hence suitable placement

of data in the cache is necessary to improve the overall

performance of the cloud systems. The existing policies in

multicore systems are neither efficient nor scalable. To

address these problems we need to find the data similarity and

to optimize the utilization of cache- both private and shared

caches. The last level cache (LLC) is dynamically shared

among all the cores in a multicore system. Each core has its

lowest level of cache hierarchy. Cache pollution – the

replacement of a cached data with a less useful one – occurs

when a non-reusable cache line is installed into a cache set.

The conventional approaches to alleviate the LLC pollution

use recent ordering as it serves as good prediction for

subsequent behaviors of cache accesses.

The proposed system alleviates these limitations. Mercury is

implemented and the similarity is managed at the page levels

by using the operating system mechanisms. This is based on

the observation that pattern analysis at the page level incurs

less overhead than at the block level. Pattern analysis at the

page level requires less state and storage space compared to

the block level policies. The system is also compatible with

the existing cloud computing systems and can further improve

by providing an efficient and scalable caching scheme. It

plays an important role in multilevel cache hierarchy. It

employs multitype membership management to narrow the

inconsistency gap between CPU and operating system caches.

The data in the multicore caches are classified into three

types. They are frequently accessed and correlated, frequently

accessed but not correlated, and infrequently accessed data

sets. The system uses a multicore enabled locality sensitive

hashing (MC-LSH) scheme to address the performance

bottleneck and to alleviate the LLC pollution. Locality

sensitive hashing (LSH) is used to accurately capture the data

similarity in the computation infrastructure for the cloud. A

conventional LSH scheme suffers from the problem of

homogeneous data placement and also it has the disadvantage

of space inefficiency. A Multi-Core-enabled LSH (MC-LSH)

is used to address these problems. In MC-LSH a signature

vector is used instead of many hash tables in a standard

locality sensitive hashing. The significant improvements in

using signature vector are the space savings and accuracy in

measuring the data similarity. It minimizes the cache conflicts

and reduces the amount of migrated data. This in turn

significantly reduces the low-speed memory accesses. We

have implemented the components and functionalities of the

system in a software layer and evaluated the efficiency using

a database system.

2. RELATED WORK

Efficient management of multilevel cache hierarchy is

important to obtain high performance in the cloud. There

exists a wide range of proposals to improve cache

performance. R-NUCA obtains near-optimal cache block

placement by online classification of blocks and placing data

close to the core [8]. Affinity scheduling [13] reduces cache

misses by judiciously scheduling a process on a recently used

CPU. A common class of workloads for shared-memory

multiprocessors is multi-programmed workloads. Data

prefetching [5] is an effective way to bridge the increasing

performance gap between processor and memory. Data

Access History Cache (DAHC) is a cache architecture which

is capable of supporting many well-known history-based

prefetching algorithms, especially adaptive and aggressive

approaches. Simulation experiments can be carried out to

validate DAHC design and DAHC-based data prefetching

methodologies and to demonstrate performance gains.

Similarity search [12] methods are widely used as various

data mining and machine learning. Nearest neighbor search

(NNS) algorithms are often used to retrieve similar entries,

given a query. A Ternary Content Addressable Memory

(TCAM) can query for a bit vector within a database of

ternary vectors, where every bit position represents 0, 1 or *.

TCAM access and storage is nearly linear in the size of the

database.

Bounded Locality Sensitive Hashing (Bounded LSH)[9]

method is used for similarity search in P2P file systems.

Bounded LSH makes improvement on the space saving and

quick query response in the similarity search, especially for

high-dimensional data objects that exhibit non-uniform

distribution property. Bounded-LSH is a simple and space-

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 1, Issue 3, May (2015)

ISSN: 2395-5317 ©EverScience Publications 10

efficient mapping of non-uniform data space into load-

balanced hash buckets that contain approximate number of

objects. The Mergeable [4] cache architecture that detects data

similarities and merges cache blocks, resulting in substantial

savings in cache storage requirements. This leads to

reductions in off-chip memory accesses and overall power

usage, and increases in application performance. This

technique provides a scalable solution and leads to significant

speedups due to reductions in main memory accesses.

Summary Cache [7] is a protocol in which each proxy keeps

the URLs of cached documents of each participating proxy.

Two factors contribute to the low overhead: the summaries

are updated only periodically, and the summary

representations are economical as low as 8 bits per entry.

A dynamic mechanism using multiple memory controllers [2]

is used that takes the memory access latency variation into

account when placing data in appropriate slices of physical

memory. An adaptive first-touch page placement and dynamic

page-migration mechanisms are used to reduce DRAM access

delays for multi-MC systems. Multi-probe LSH [11] is built

on the well-known LSH technique, but it intelligently probes

multiple buckets that are likely to contain query results in a

hash table. The multi-probe LSH method is implemented and

evaluated the implementation with two different high-

dimensional datasets.

Scavenger [3] is an architecture for last-level caches.

Scavenger divides the total storage budget into a conventional

cache and a victim file architecture, which employs a skewed

Bloom filter in conjunction with a pipelined priority heap to

identify and retain the blocks that most frequently missed in

the conventional part of the cache in the past. An adaptive

cache compression [1] policy is implemented that

dynamically adapts to the costs and benefits of cache

compression. This policy is based on a two-level cache

hierarchy where the L1 cache holds uncompressed data and

the L2 cache dynamically selects between compressed and

uncompressed storage. MCC-DB [10] makes use of different

query execution patterns to minimize cache conflicts.

3. PROPOSED MODELLING

The property of data similarity is helpful to perform an

efficient and scalable caching. The main benefits obtained

from such a scheme include throughput improvements and the

reduction of the last level cache misses rates, query latency,

and data migration overheads.

The system is designed based on the observations that data

similarity widely exists in the real-world applications. The

problem of similarity search refers to finding objects that have

similar characteristics to the query object. When data objects

are represented by d-dimensional feature vectors, the goal of

similarity search for a given query object q, is to find the K

objects that are closest to q according to a distance function in

the d-dimensional space. The search quality is measured by

the fraction of the nearest K objects that are able to retrieve.

Data similarity is defined based on a predefined threshold

value. For two data with point representations as a and b,

having d-dimensional attributes that are represented as vectors

a̚d and ̚bd, if the geometric distance between vectors ̚ad and ̚bd

is smaller than the predefined threshold, they are similar. The

data similarity often hides behind the locality of access

patterns.

2.1 Multitype Membership

The cached data placement in the multilevel cache hierarchy

for a multicore architecture to offer efficient computation

infrastructure for the cloud is shown in Fig 2.1(a). The term

“cache-member,” determines the data memberships in each

cache based on the given constraints. The constraints include

migration costs and data access latency. It is analyzed based

on the architecture where multicore processors share a

common L2 cache and each core has its own private L1

cache.

a)Private L1 caches and shared L2 cache

Figure 2.1 Cache-member Description

It is needed to identify and aggregate similar data into the

same or adjacent private L1 caches, and then allocate the data

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 1, Issue 3, May (2015)

ISSN: 2395-5317 ©EverScience Publications 11

accessed by more than one core into a shared L2 cache. Thus

the cached data is managed in both L1 and L2 caches.

Moreover, an ideal multicore architecture is scalable and

flexible to allow dynamic and adaptive management on the

cached data. The premise is to accurately capture the similar

data.

The homogeneous data placement is based on the distinct

properties and multitype memberships of cached data. A

differentiated placement policy is used to improve the

homogeneous data management. In this policy the cache

memberships are classified into three types as shown in

Figure 2.1(b). The accessed data are classified into three

categories. They are i) Frequently accessed and correlated

data (Type-1), ii) Frequently accessed but loosely correlated

data (Type-2), and iii) Infrequently accessed data (Type-3).

After the classification of data they are placed in different

locations. The frequently accessed and correlated data are

placed in private L1 cache, and the frequently accessed but

loosely correlated data are placed in L2 cache. The

infrequently accessed data are placed in the main memory. In

this way, the strength of access locality is differentiated to

facilitate the efficient placement of cached data.

2.2 Locality Sensitive Hashing (LSH)

Data stored in the cloud are heterogeneous and of high

dimensions. Hence finding the data similarity is a time

consuming and computation-intensive work. To accomplish a

suitable tradeoff between similarity accuracy and operation

complexity, a hash-based approach, the LSH is used due to its

locality-aware property and ease of use. The LSH can identify

and place similar data together with low complexity. Locality-

Sensitive Hashing (LSH) is a method which is used for

determining which items in a given set are similar. Rather

than using the naive approach of comparing all pairs of items

within a set, items are hashed into buckets, such that similar

items will be more likely to hash into the same buckets. As a

result the number of comparisons needed will be reduced;

only the items within any one bucket will be compared.

Locality-sensitive hashing is often used when there exist an

extremely large amount of data items that must be compared.

In these cases, it may also be that the data items themselves

will be too large, and as such will have their dimensionality

reduced by a feature extraction technique beforehand.

The main application of LSH is to provide a method for

efficient approximate nearest neighbour search through

probabilistic dimension reduction of high-dimensional data.

This dimensional reduction is done through feature extraction

realized through hashing (eg. minhash signatures), for which

different schemes are used depending upon the data. LSH is

used in fields such as data mining, pattern recognition,

computer vision, computational geometry, and data

compression. It also has direct applications in spell checking,

plagiarism detection, and chemical similarity. Locality

Sensitive Hashing (LSH) is a method of performing

probabilistic dimension reduction of high-dimensional data.

The basic idea is to hash the input items so that similar items

are mapped to the same buckets with high probability (the

number of buckets being much smaller than the universe of

possible input items).

A locality sensitive hashing scheme is defined with respect to

a universe of items U and a distance metric ϕ :U×U→[0,1].

An LSH scheme is a family of hash functions H coupled with

a distribution D over the functions such that a function h∈H

chosen according to D satifies the property that

Pr[h(a)=h(b)]=ϕ(a,b) for any a,b∈U.

3. 1 System Architecture

MERCURY uses the MC-LSH to identify similar data and

leverages an LRU replacement in each cache to update stale

data. Figure 3.1 shows the MERCURY architecture in the

multilevel hierarchy. It is assumed that each core has one

private L1 cache and all processor cores share an L2 cache.

Figure 3.1 Mercury multicore caching architecture

The MERCURY scheme is tightly associated with two parts.

One is the processor architecture and the other is the operating

system. Furthermore, to explicitly represent the differentiated

memberships identified by the MC-LSH, different flags are

used to label each cache line and obtain holistic optimization

in the multilevel cache hierarchy.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 1, Issue 3, May (2015)

ISSN: 2395-5317 ©EverScience Publications 12

3.2 Cache data Management

The caching schemes in a multicore processor include L1 and

L2 cache management [18], and virtual-physical address

translation. L1 cache management deals with frequently

accessed and closely related data placement. Each core has

one associated cache that contains frequently visited data to

increase the access speed and decrease the required

bandwidth. L2 cache management deals with frequently

accessed and loosely related data placement.

L2-cache is a shared cache and to partition the shared L2

cache, the well-known page color [16],[17] scheme is used

due to its simplicity and flexibility. Page coloring is an

extensively used OS technique for improving cache and

memory performance. Page colouring is illustrated as shown

in Figure 3.2.

A physical address contains several common bits between the

cache index and the physical page number, which is indicated

as a page color. One can divide a physically addressed cache

into nonintersecting regions (cache color) by page color, and

the pages with the same page color are mapped to the same

cache color. A shared cache is divided into N colors, where N

comes from the architectural settings. The cache lines are

represented by using one of N cache colors.

Figure 3.2 Page colouring technique

Figure 3.3 Page Colour bits

Page color manages the bits between the cache index and the

physical page number in the physical memory address as

shown in Figure 3.3. Page coloring is a software technique

that controls the mapping of physical memory pages to a

processor’s cache blocks. Memory pages that map to the same

cache blocks are assigned the same color. By controlling the

color of pages assigned to an application, the operating

system can manipulate cache blocks at the granularity of the

page size times the cache associativity. This granularity is the

unit of cache space that can be allocated to an application.

The maximum number of colors that a platform can support is

the cache line size multiplied by the number of sets and

divided by the page size.

Specifically, the applications need to specify the required

space in their requests. The requests help decide how to

partition available cache space among query requests. Query

execution processes indicate partitioning results by updating a

page color table. The memory pages of the same color can be

mapped to the same cache region. To efficiently partition the

cache space, different page colors are allocated to memory

threads. MERCURY can hence leverage the page coloring

technique to complete cache partitioning among different

processes and support the queries.

The operating system functionalities support the MC-LSH

computation and update the locality-aware data. A standard

LSH helps identify similar data and unfortunately incurs

heavy space overhead, i.e., consuming too many hash tables,

to identify the locality-aware data. The space inefficiency

often results in the overflowing from a limited-size cache.

MERCURY proposes to use an MC-LSH, Multicore Locality

Sensitive Hashing, to offer efficiency and scalability to the

multicore caching. Specifically, the MC-LSH uses a space-

efficient signature vector to maintain the cached data and

utilizes a coding technique to support a differentiated

placement policy for the multitype data.

A key function in MERCURY is to identify similar data with

low operation complexity for updating locality-aware data.

This identification and updating is to be done accurately as

well as fast. MC-LSH scheme is used to identify similar data

and avoid brute-force checking between arriving data and all

valid cache lines. The similar data are then placed in the same

or close-by caches to facilitate multicore computation and

efficiently update data. Since the cached data are locality-

aware, MERCURY, hence, decreases migration costs and

minimizes cache conflicts.

3.3 SIMILARITY Detection

Similarity detection is a main component in the MERCURY

designs to detect the homogeneous data. The algorithm used

for this purpose is based on Locality Sensitive Hashing. In

Locality Sensitive Hashing the similarity between two items,

C1 and C2, are determined as follows.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 1, Issue 3, May (2015)

ISSN: 2395-5317 ©EverScience Publications 13

The similarity of C1 and C2 = Sim (C1,C2) = is the ratio of

the sizes of the intersection and union of C1 and C2.

• Sim (C1,C2) = |C1C2|/|C1C2| (3.1)

• The probability that h (C1) = h (C2) is the same as Sim

(C1, C2)

The value computed using Equation (3.1) gives the similarity

between C1 and C2. It is the ratio of intersection to the union.

An MC-LSH, Multicore Locality Sensitive Hashing, design is

used in MERCURY to capture the data similarity. The MC-

LSH is a multicore-enabled scheme that consists of the LSH-

based computation, a signature vector structure and the

multitype membership coding technique. It offers a

deterministic membership for each data item. Compared with

the conventional classification schemes for exact results, the

MC-LSH provides an approximate and fast scheme to obtain

significant time and space-savings. The MC-LSH employs the

LSH functions to identify similar data based on the access

patterns. To address the problem of space inefficiency (i.e.,

too many hash tables) in the standard LSH, a signature vector

structure is employed. Furthermore, to offer differentiated

data placement, a multitype membership coding technique is

used.

The standard LSH has the limitation that it captures similar

data by allowing them to be placed into the same hash buckets

with a high probability.

Definition 1. Given a distance function ǁ*ǁ, a data domain S,

and some universe U, an LSH function family, i.e.,

IH={h:S→U} is called (R,cR,P1,P2)-sensitive, if for ˅p,q C S

:

 If ǁp,qǁ≤ R then PrIH[h(p)=h(q)]≥P1, (3.2)

 If ǁp,qǁ>cR then PrIH[h(p)=h(q)]≤P2 (3.3)

where c>1 and P1>P2.

A value 1 in the probability calculated using the Equation

(3.2) shows that the items are completely similar. A value less

than or equal to 1 can be used for computational purposes and

this is taken as the threshold value. If the distance calculated

using the probabilities in Equation (3.2) and Equation (3.3) is

less than the defined threshold value, the items are considered

as dissimilar. Otherwise they are treated as similar items.

Thus the distance function can be used to determine the

similarity.

By using the LSH functions, similar data have a higher

probability of colliding than the data that are far apart.

Although the LSH has been recently used in many

applications, it is difficult to be used in the multicore systems

due to heavy space overhead and homogeneous data

placement. These limitations have severely hampered the use

of the multicore benefits for high-performance systems.

Unlike the existing work, MERCURY enables the LSH to be

space-efficient by leveraging signature vectors.

3.4 SIGNATURE Vector

A space-efficient signature vector and a simple coding

technique help maintain and represent the multitype

memberships. The MC-LSH uses space-efficient signature

vectors to store and maintain the locality of access patterns. A

signature vector is an m-bit array where each bit is initially set

to 0. LSH functions are used to map data points into bits.

There are totally L LSH functions, gi(1 ≤ i ≤ L), to hash a data

point into bits, rather than its original buckets in hash tables.

This technique significantly decreases space overhead. A data

point is given as an input to a hash function gi , which is then

mapped into a bit that is thus set to 1.If a bit is set more than

once only the first setting takes effect.

The signature vector is used to maintain the data similarity.

The bits that receive more hits than its left and right

neighbours are known as centralized bits. The hit numbers are

much larger than a predefined threshold value. The

centralized bits become the centers of correlated data. They

are selected to be mapped and stored in the L1 caches. When

hashing data into the signature vector, the hit numbers of bits

are counted and carefully select the centralized bits. The

threshold demonstrates the clustering degree of data

distribution, thus depending upon the access patterns of the

real-world applications. After selecting the centralized bits, a

mapping between the centralized bits and L1 caches is

constructed to facilitate the data placement. Moreover, the

number of centralized bits is unnecessarily equal to that of the

L1 caches. If the number of centralized bits is larger than that

of L1 caches, an L1 cache may contain the data from more

than one adjacent centralized bit.

Even though the MC-LSH computation can guarantee similar

data to be hashed into one bit with very high probability, it

need not be 100 percent accurate. This means that similar data

are still possible to be placed into adjacent bits. False

negative, hence, occurs when the hit bit is 0 and one of its

neighbours is 1. An extra check to the neighbouring bits

besides the hit one can be done to avoid potential false

negatives. Although extra checking on neighbouring bits

possibly incurs false positives, a miss from the false negative

generally incurs the larger penalty than the false positive.

MERCURY probes more than one hit bit, i.e., checking left

and right neighbours, besides the hashed bit when the hit bit is

“0”.

MERCURY offers scalable and flexible schemes based on the

characteristics of the real-world workloads to efficiently

update the signature vectors. Specifically, if the workloads

exhibit an operation-intensive (e.g., write-intensive)

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 1, Issue 3, May (2015)

ISSN: 2395-5317 ©EverScience Publications 14

characteristic, the operations are carried out on the signature

vectors and allow the (re)-initialization in the idle time.

3.5 Membership Coding

Multitype membership coding is used in the scheme to

differentiate data. The memberships in the MC-LSH include

frequently accessed and correlated, frequently accessed but

not correlated and infrequently accessed data. The MC-LSH

identifies data memberships and places data into L1 cache, L2

cache, or main memory, respectively. To determine whether

the hits in multiple LSH vectors indicate a single cache, a

coding technique is used which guarantees membership

consistency and integrity.

3.5 Identifying and Removing Redundancy

In the multilevel hierarchy of MERCURY, it is needed to

update cached data and their memberships in the signature

vector. We use a least frequently used (LFU) replacement

strategy. With LFU, the cached data are all more popular than

others. Moreover the frequency of accessing the data items is

available from the signature vector and the counting Bloom

Filter. Hence there is no extra computation complexity and no

other data structure is needed. To avoid redundancy of cached

data, the shared L2 cache is used to place data shared among

multiple cores. The private cache L1, of each core contains

separate data. These data are periodically scanned to find

duplication. The similarity function is used for this. Similar

data used by multiple cores are placed in shared L2 cache.

Page coloring is used for improving the cache performance. In

the shared L2 cache, the data is labelled using page colors of

the correlated cores to update caches. For two items C1 and

C2, if the ratio of the intersection to the union is greater than

or equal to a predefined threshold, they are considered as

similar.

The counting Bloom filters are used to update the data

membership in the signature vectors. They facilitate the data

deletion and maintain the membership of the data that have

been identified to be correlated and placed into the

corresponding L1 caches. The counting Bloom filters help

maintain the membership of cached data in a space-efficient

way. They also carry out the initialization of the L1 caches

and keep the load balance among multiple L1 caches.

Each counting Bloom filter is associated with one L1 cache.

When an item is inserted into the L1 cache, it is meanwhile

inserted into the counting Bloom filter and the hit counters are

increased by 1. Since each counting Bloom filter only needs

to maintain the items existing in the corresponding L1 cache

and the number of stored data is relatively small, only less

storage space is required. When an item is deleted, the hit

counters are decreased by 1. If all counters become 0, there

are no cached data. In that situation the associated caches are

initialized by sampling data to determine the locality-aware

representation in the signature vector. The size of a signature

vector depends on not only the amounts of data to be inserted,

but also their distribution.

4 RESULTS AND DISCUSSIONS

MERCURY leverages the MC-LSH to identify similar data

that are placed into L1 and L2 caches, respectively, with an

LFU replacement policy. Specifically, each core has its own

private L1 cache whereas an L2 cache is shared by multiple

cores. The scalability of MERCURY is evaluated by

increasing the number of cores. The experiments were done in

a software simulation environment using a web server and

clients. A database was used to simulate the cloud storage. In

the simulation model a number of clients are setup to send out

queries concurrently. For each client, queries are randomly

drawn from the pool of all TPC-H queries. The experiments

are repeated under different data set sizes and measured the

performance by the metrics migration cost and hit rate. The

outputs for these metrics are compared with other existing

systems to show the efficiency of the Mercury.

4.1 Migration Cost

Hit misses or updates in caches often lead to data migration

among multiple caches. This incurs relatively high costs in

terms of data transmission and replacement in the caches of

other cores. Fig. 4.1 shows the percentage of migrated data in

Private, Shared, PCM, and MERCURY. The average

percentages of migrated data are 13.2 and 11.9 percent,

respectively, in private and shared caches as shown in Table

4.1.

Architecture Private Shared Mercury PCM

Avg percent of

migrated data
13.2 11.9 2.8 8.5

 Table 4.1 Average percentage of migrated data

Figure 4.1 Percentage of migrated data

MERCURY can obtain better performance in this metric and

decrease the number of migrated data on average by 35.26 on

4-core systems. One of the main reasons for this is that the

MC-LSH provides high accuracy of identifying correlated

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 1, Issue 3, May (2015)

ISSN: 2395-5317 ©EverScience Publications 15

data, thus reducing the number of migrated data. The other

reason is that the fast identification of similar data in

MERCURY produces low computation complexity.

4.2 Hit Rate

One of the key metrics to evaluate cache efficiency is the hit

rate that defines the probability of obtaining queried data

within limited cache space for requests. Fig.4.2 shows the

cache hit rate of the MERCURY scheme compared with

private, shared, and PCM. The average hit rates in private,

shared, MERCURY, and PCM are respectively 65.22, 67.15,

86.92, and 69.27 percent on the 4-core system, which is

tabulated in Table 4.2.

Architecture Private Shared Mercury PCM

Avg percent of

hit rate
65.22 67.15 86.92 69.27

 Table 4.2 Average percentage of migrated data

MERCURY has the better performance in this metric than

others since the MC-LSH accurately identifies correlated data

within constant-scale execution complexity. The improved

accuracy significantly decreases potential migration costs that

possibly occur due to hit misses. The quick identification also

alleviates the effects of staleness in the caches.

 Fig 4.2 Hit rates

5 CONCLUSION

Mercury determines data similarity and support efficient data

placement. The MC-LSH accurately captures the

differentiated similarity among data. MC- LSH scheme

alleviates the problem of homogeneous data placement and

space inefficiency. The similarity-aware MERCURY plays an

important role in multilevel cache hierarchy. It efficiently

partitions data into L1 cache, L2 cache and main memory

based on their distinct localities in a multicore system

environment. L2-cache is a shared cache and to partition the

shared L2 cache, the page color scheme is used to control

cache partitioning, and consequently to achieve fair and

efficient cache utilization. It employs multitype membership

management to narrow the inconsistency gap between CPU

and operating system caches.

REFERENCES

[1] Alameldeen and Wood D (2004), “Adaptive Cache Compression for

High-Performance Processors,” Proc. 31st Ann. Int’l Symp. Computer

Architecture (ISCA).
[2] Awasthi M, Nellans D, Sudan K, Balasubramonian R, and Davis A

(2012), “Managing Data Placement in Memory Systems with Multiple

Memory Controllers,” Int’l J. Parallel Programming, vol. 40, no. 1, pp.
57-83,.

[3] Basu, Kirman N, Kirman M, Chaudhuri M, and Martinez J (2007),

“Scavenger: A New Last Level Cache Architecture with Global Block
Priority,” Proc. 40th Ann. IEEE/ACM Int’l Symp. Microarchitecture

(MICRO), pp. 421-432.

[4] Biswas S, Franklin D, Savage A, Dixon R, Sherwood T, and Chong

(2009), “Multi-Execution: Multicore Caching for Data-Similar

Executions,” Proc. 36th Ann. Int’l Symp. Computer Architecture

(ISCA.
[5] Chen Y, Byna S, and Sun X (2007), “Data Access History Cache and

Associated Data Prefetching Mechanisms,” Proc. IEEE/ACM Conf.

Supercomputing (SC).
[6] Ding X, Wang K, and Zhang X (2011) “SRM-Buffer: An OS Buffer

Management Technique to Prevent Last Level Cache from Thrashing

in Multicores”, Proc. Sixth Conf. Computer Systems (EuroSys).
[7] Fan L, Cao P, Almeida J, and Broder A (2000), “Summary Cache: A

Scalable Wide-Area Web Cache Sharing Protocol,” IEEE/ACM Trans.

Networking, vol. 8, no. 3, pp. 281-293.
[8] Hardavellas N, Ferdman M, Falsafi B, and Ailamaki A,(2010) “Near

Optimal Cache Architectures”, IEEE Micro, vol 30, no.1 pp.20-28

[9] Hua Y, Xiao B, Feng D., and Yu B.(2008), “Bounded LSH for
Similarity Search in Peer-to-Peer File Systems,” Proc. 37th Int’l Conf.

Parallel Processing (ICPP), pp. 644-651.

[10] Lee R, Ding X, Chen F,Lu Q, and Zhang X (2009), “MCC-DB:

Minimising Cache Conflicts in Multi-core Processors for Databases”,

Proc. VLDB Endowment, vol.2,no.1,pp.373-384.

[11] Lv Q, Josephson W, Wang Z, Charikar M, and Li K(2007), “Multi-
Probe LSH: Efficient Indexing for High-Dimensional Similarity

Search,” Proc. 33rd Int’l Conf. Very Large Data Bases (VLDB), pp.

950-961.
[12] Shinde R, Goel A, Gupta P, and Dutta D (2010), “Similarity Search

and Locality Sensitive Hashing Using Ternary Content Addressable

Memories,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD), pp. 375-386.

[13] Torrellas J, Tucker A, and Gupta A (1993), “Benefits of Cache-

Affinity Scheduling in Shared-Memory Multiprocessors: A
Summary,” Proc. ACM SIGMETRICS Conf. Measurement and

Modeling of Computer Systems (SIGMETRICS).
[14] Wang Y,Veeravalli B (2013) “On Data Staging Algoriths for Shared

Data Accesses in Clouds”. IEEE Transactions on Parallel and

Distributed Systems, VOL.24, No.4
[15] Wu S, Li F,Mehrotra S. and Ooi B (2011) “Query Optimization for

Massively Parallel Data Processing,” Proc. ACM Symp. Cloud

Computing (SOCC).
[16] Ye Y, West R, Cheng Z, and Li Y (2014) “COLORIS: A Dynamic

Cache Partitioning System Using Page Coloring” PACT’14, August

24-27,2014
[17] Zhang X, Dwarkadas S, Shen K (2009) “Towards Practical Page

Coloring-based Multi-core Cache Management”. Eurosys’09.

[18] Zhang Z, Zhu Z, and Zhang X,(2004) “Design and Optimization of
Large size and Low Overhead Off-Chip caches,: IEEE Trans.

Computers, vol.53, no.7, pp.843-855.

[19] Aarti Singh, Manisha Malhotra “Security Concerns at Various Levels
of Cloud Computing Paradigm”, International Journal of Computer

Networks and Applications, Volume 2, Issue 2, Page No: 41-45, April

– May (2015).

